Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 95: 103181, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640779

RESUMO

Supervised machine learning-based medical image computing applications necessitate expert label curation, while unlabelled image data might be relatively abundant. Active learning methods aim to prioritise a subset of available image data for expert annotation, for label-efficient model training. We develop a controller neural network that measures priority of images in a sequence of batches, as in batch-mode active learning, for multi-class segmentation tasks. The controller is optimised by rewarding positive task-specific performance gain, within a Markov decision process (MDP) environment that also optimises the task predictor. In this work, the task predictor is a segmentation network. A meta-reinforcement learning algorithm is proposed with multiple MDPs, such that the pre-trained controller can be adapted to a new MDP that contains data from different institutes and/or requires segmentation of different organs or structures within the abdomen. We present experimental results using multiple CT datasets from more than one thousand patients, with segmentation tasks of nine different abdominal organs, to demonstrate the efficacy of the learnt prioritisation controller function and its cross-institute and cross-organ adaptability. We show that the proposed adaptable prioritisation metric yields converging segmentation accuracy for a new kidney segmentation task, unseen in training, using between approximately 40% to 60% of labels otherwise required with other heuristic or random prioritisation metrics. For clinical datasets of limited size, the proposed adaptable prioritisation offers a performance improvement of 22.6% and 10.2% in Dice score, for tasks of kidney and liver vessel segmentation, respectively, compared to random prioritisation and alternative active sampling strategies.

2.
Front Surg ; 10: 1222859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780914

RESUMO

Background: Endoscopic endonasal surgery is an established minimally invasive technique for resecting pituitary adenomas. However, understanding orientation and identifying critical neurovascular structures in this anatomically dense region can be challenging. In clinical practice, commercial navigation systems use a tracked pointer for guidance. Augmented Reality (AR) is an emerging technology used for surgical guidance. It can be tracker based or vision based, but neither is widely used in pituitary surgery. Methods: This pre-clinical study aims to assess the accuracy of tracker-based navigation systems, including those that allow for AR. Two setups were used to conduct simulations: (1) the standard pointer setup, tracked by an infrared camera; and (2) the endoscope setup that allows for AR, using reflective markers on the end of the endoscope, tracked by infrared cameras. The error sources were estimated by calculating the Euclidean distance between a point's true location and the point's location after passing it through the noisy system. A phantom study was then conducted to verify the in-silico simulation results and show a working example of image-based navigation errors in current methodologies. Results: The errors of the tracked pointer and tracked endoscope simulations were 1.7 and 2.5 mm respectively. The phantom study showed errors of 2.14 and 3.21 mm for the tracked pointer and tracked endoscope setups respectively. Discussion: In pituitary surgery, precise neighboring structure identification is crucial for success. However, our simulations reveal that the errors of tracked approaches were too large to meet the fine error margins required for pituitary surgery. In order to achieve the required accuracy, we would need much more accurate tracking, better calibration and improved registration techniques.

3.
Med Image Anal ; 90: 102943, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703675

RESUMO

Augmented Reality (AR) is considered to be a promising technology for the guidance of laparoscopic liver surgery. By overlaying pre-operative 3D information of the liver and internal blood vessels on the laparoscopic view, surgeons can better understand the location of critical structures. In an effort to enable AR, several authors have focused on the development of methods to obtain an accurate alignment between the laparoscopic video image and the pre-operative 3D data of the liver, without assessing the benefit that the resulting overlay can provide during surgery. In this paper, we present a study that aims to assess quantitatively and qualitatively the value of an AR overlay in laparoscopic surgery during a simulated surgical task on a phantom setup. We design a study where participants are asked to physically localise pre-operative tumours in a liver phantom using three image guidance conditions - a baseline condition without any image guidance, a condition where the 3D surfaces of the liver are aligned to the video and displayed on a black background, and a condition where video see-through AR is displayed on the laparoscopic video. Using data collected from a cohort of 24 participants which include 12 surgeons, we observe that compared to the baseline, AR decreases the median localisation error of surgeons on non-peripheral targets from 25.8 mm to 9.2 mm. Using subjective feedback, we also identify that AR introduces usability improvements in the surgical task and increases the perceived confidence of the users. Between the two tested displays, the majority of participants preferred to use the AR overlay instead of navigated view of the 3D surfaces on a separate screen. We conclude that AR has the potential to improve performance and decision making in laparoscopic surgery, and that improvements in overlay alignment accuracy and depth perception should be pursued in the future.


Assuntos
Realidade Aumentada , Laparoscopia , Cirurgia Assistida por Computador , Humanos , Imageamento Tridimensional/métodos , Laparoscopia/métodos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Cirurgia Assistida por Computador/métodos
4.
Med Phys ; 50(5): 2695-2704, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36779419

RESUMO

BACKGROUND: Accurate camera and hand-eye calibration are essential to ensure high-quality results in image-guided surgery applications. The process must also be able to be undertaken by a nonexpert user in a surgical setting. PURPOSE: This work seeks to identify a suitable method for tracked stereo laparoscope calibration within theater. METHODS: A custom calibration rig, to enable rapid calibration in a surgical setting, was designed. The rig was compared against freehand calibration. Stereo reprojection, stereo reconstruction, tracked stereo reprojection, and tracked stereo reconstruction error metrics were used to evaluate calibration quality. RESULTS: Use of the calibration rig reduced mean errors: reprojection (1.47 mm [SD 0.13] vs. 3.14 mm [SD 2.11], p-value 1e-8), reconstruction (1.37 px [SD 0.10] vs. 10.10 px [SD 4.54], p-value 6e-7), and tracked reconstruction (1.38 mm [SD 0.10] vs. 12.64 mm [SD 4.34], p-value 1e-6) compared with freehand calibration. The use of a ChArUco pattern yielded slightly lower reprojection errors, while a dot grid produced lower reconstruction errors and was more robust under strong global illumination. CONCLUSION: The use of the calibration rig results in a statistically significant decrease in calibration error metrics, versus freehand calibration, and represents the preferred approach for use in the operating theater.


Assuntos
Calibragem , Processamento de Imagem Assistida por Computador , Laparoscópios , Laparoscópios/normas , Laparoscopia/instrumentação , Confiabilidade dos Dados , Dispositivos Ópticos/normas
5.
Int J Comput Assist Radiol Surg ; 17(8): 1461-1468, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35366130

RESUMO

PURPOSE: The registration of Laparoscopic Ultrasound (LUS) to CT can enhance the safety of laparoscopic liver surgery by providing the surgeon with awareness on the relative positioning between critical vessels and a tumour. In an effort to provide a translatable solution for this poorly constrained problem, Content-based Image Retrieval (CBIR) based on vessel information has been suggested as a method for obtaining a global coarse registration without using tracking information. However, the performance of these frameworks is limited by the use of non-generalisable handcrafted vessel features. METHODS: We propose the use of a Deep Hashing (DH) network to directly convert vessel images from both LUS and CT into fixed size hash codes. During training, these codes are learnt from a patient-specific CT scan by supplying the network with triplets of vessel images which include both a registered and a mis-registered pair. Once hash codes have been learnt, they can be used to perform registration with CBIR methods. RESULTS: We test a CBIR pipeline on 11 sequences of untracked LUS distributed across 5 clinical cases. Compared to a handcrafted feature approach, our model improves the registration success rate significantly from 48% to 61%, considering a 20 mm error as the threshold for a successful coarse registration. CONCLUSIONS: We present the first DH framework for interventional multi-modal registration tasks. The presented approach is easily generalisable to other registration problems, does not require annotated data for training, and may promote the translation of these techniques.


Assuntos
Laparoscopia , Tomografia Computadorizada por Raios X , Humanos , Laparoscopia/métodos , Fígado/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos
6.
Int J Comput Assist Radiol Surg ; 16(7): 1151-1160, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046826

RESUMO

PURPOSE: Registration of Laparoscopic Ultrasound (LUS) to a pre-operative scan such as Computed Tomography (CT) using blood vessel information has been proposed as a method to enable image-guidance for laparoscopic liver resection. Currently, there are solutions for this problem that can potentially enable clinical translation by bypassing the need for a manual initialisation and tracking information. However, no reliable framework for the segmentation of vessels in 2D untracked LUS images has been presented. METHODS: We propose the use of 2D UNet for the segmentation of liver vessels in 2D LUS images. We integrate these results in a previously developed registration method, and show the feasibility of a fully automatic initialisation to the LUS to CT registration problem without a tracking device. RESULTS: We validate our segmentation using LUS data from 6 patients. We test multiple models by placing patient datasets into different combinations of training, testing and hold-out, and obtain mean Dice scores ranging from 0.543 to 0.706. Using these segmentations, we obtain registration accuracies between 6.3 and 16.6 mm in 50% of cases. CONCLUSIONS: We demonstrate the first instance of deep learning (DL) for the segmentation of liver vessels in LUS. Our results show the feasibility of UNet in detecting multiple vessel instances in 2D LUS images, and potentially automating a LUS to CT registration pipeline.


Assuntos
Hepatectomia/métodos , Neoplasias Hepáticas/cirurgia , Fígado/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Humanos , Laparoscopia/métodos , Fígado/cirurgia , Neoplasias Hepáticas/diagnóstico
7.
IEEE Trans Med Imaging ; 40(3): 1042-1054, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326379

RESUMO

Laparoscopic Ultrasound (LUS) is recommended as a standard-of-care when performing laparoscopic liver resections as it images sub-surface structures such as tumours and major vessels. Given that LUS probes are difficult to handle and some tumours are iso-echoic, registration of LUS images to a pre-operative CT has been proposed as an image-guidance method. This registration problem is particularly challenging due to the small field of view of LUS, and usually depends on both a manual initialisation and tracking to compose a volume, hindering clinical translation. In this paper, we extend a proposed registration approach using Content-Based Image Retrieval (CBIR), removing the requirement for tracking or manual initialisation. Pre-operatively, a set of possible LUS planes is simulated from CT and a descriptor generated for each image. Then, a Bayesian framework is employed to estimate the most likely sequence of CT simulations that matches a series of LUS images. We extend our CBIR formulation to use multiple labelled objects and constrain the registration by separating liver vessels into portal vein and hepatic vein branches. The value of this new labeled approach is demonstrated in retrospective data from 5 patients. Results show that, by including a series of 5 untracked images in time, a single LUS image can be registered with accuracies ranging from 5.7 to 16.4 mm with a success rate of 78%. Initialisation of the LUS to CT registration with the proposed framework could potentially enable the clinical translation of these image fusion techniques.


Assuntos
Laparoscopia , Tomografia Computadorizada por Raios X , Teorema de Bayes , Humanos , Fígado/diagnóstico por imagem , Fígado/cirurgia , Estudos Retrospectivos
8.
J Open Res Softw ; 8(1): 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395246

RESUMO

SnappySonic provides an ultrasound acquisition replay simulator designed for public engagement and training. It provides a simple interface to allow users to experience ultrasound acquisition without the need for specialist hardware or acoustically compatible phantoms. The software is implemented in Python, built on top of a set of open source Python modules targeted at surgical innovation. The library has high potential for reuse, most obviously for those who want to simulate ultrasound acquisition, but it could also be used as a user interface for displaying high dimensional images or video data.

9.
Int J Comput Assist Radiol Surg ; 13(8): 1177-1186, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29860550

RESUMO

PURPOSE: Laparoscopic ultrasound (LUS) enhances the safety of laparoscopic liver resection by enabling real-time imaging of internal structures such as vessels. However, LUS probes can be difficult to use, and many tumours are iso-echoic and hence are not visible. Registration of LUS to a pre-operative CT or MR scan has been proposed as a method of image guidance. However, the field of view of the probe is very small compared to the whole liver, making the registration task challenging and dependent on a very accurate initialisation. METHODS: We propose the use of a subject-specific planning framework that provides information on which anatomical liver regions it is possible to acquire vascular data that is unique enough for a globally optimal initial registration. Vessel-based rigid registration on different areas of the pre-operative CT vascular tree is used in order to evaluate predicted accuracy and reliability. RESULTS: The planning framework is tested on one porcine subject where we have taken 5 independent sweeps of LUS data from different sections of the liver. Target registration error of vessel branching points was used to measure accuracy. Global registration based on vessel centrelines is applied to the 5 datasets. In 3 out of 5 cases registration is successful and in agreement with the planning. Further tests with a CT scan under abdominal insufflation show that the framework can provide valuable information in all of the 5 cases. CONCLUSIONS: We have introduced a planning framework that can guide the surgeon on how much LUS data to collect in order to provide a reliable globally unique registration without the need for an initial manual alignment. This could potentially improve the usability of these methods in clinic.


Assuntos
Hepatectomia/métodos , Laparoscopia/métodos , Neoplasias Hepáticas/diagnóstico por imagem , Fígado/diagnóstico por imagem , Animais , Fígado/cirurgia , Neoplasias Hepáticas/cirurgia , Reprodutibilidade dos Testes , Suínos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos
10.
Int J Comput Assist Radiol Surg ; 13(6): 947-956, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29736801

RESUMO

PURPOSE: Image-guidance systems have the potential to aid in laparoscopic interventions by providing sub-surface structure information and tumour localisation. The registration of a preoperative 3D image with the intraoperative laparoscopic video feed is an important component of image guidance, which should be fast, robust and cause minimal disruption to the surgical procedure. Most methods for rigid and non-rigid registration require a good initial alignment. However, in most research systems for abdominal surgery, the user has to manually rotate and translate the models, which is usually difficult to perform quickly and intuitively. METHODS: We propose a fast, global method for the initial rigid alignment between a 3D mesh derived from a preoperative CT of the liver and a surface reconstruction of the intraoperative scene. We formulate the shape matching problem as a quadratic assignment problem which minimises the dissimilarity between feature descriptors while enforcing geometrical consistency between all the feature points. We incorporate a novel constraint based on the liver contours which deals specifically with the challenges introduced by laparoscopic data. RESULTS: We validate our proposed method on synthetic data, on a liver phantom and on retrospective clinical data acquired during a laparoscopic liver resection. We show robustness over reduced partial size and increasing levels of deformation. Our results on the phantom and on the real data show good initial alignment, which can successfully converge to the correct position using fine alignment techniques. Furthermore, since we can pre-process the CT scan before surgery, the proposed method runs faster than current algorithms. CONCLUSION: The proposed shape matching method can provide a fast, global initial registration, which can be further refined by fine alignment methods. This approach will lead to a more usable and intuitive image-guidance system for laparoscopic liver surgery.


Assuntos
Hepatectomia/métodos , Laparoscopia/métodos , Fígado/cirurgia , Radiografia Intervencionista/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Imageamento Tridimensional/métodos , Fígado/diagnóstico por imagem , Estudos Retrospectivos
11.
Int J Comput Assist Radiol Surg ; 12(7): 1079-1088, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28401399

RESUMO

PURPOSE: Minimally invasive surgery offers advantages over open surgery due to a shorter recovery time, less pain and trauma for the patient. However, inherent challenges such as lack of tactile feedback and difficulty in controlling bleeding lower the percentage of suitable cases. Augmented reality can show a better visualisation of sub-surface structures and tumour locations by fusing pre-operative CT data with real-time laparoscopic video. Such augmented reality visualisation requires a fast and robust video to CT registration that minimises interruption to the surgical procedure. METHODS: We propose to use view planning for efficient rigid registration. Given the trocar position, a set of camera positions are sampled and scored based on the corresponding liver surface properties. We implement a simulation framework to validate the proof of concept using a segmented CT model from a human patient. Furthermore, we apply the proposed method on clinical data acquired during a human liver resection. RESULTS: The first experiment motivates the viewpoint scoring strategy and investigates reliable liver regions for accurate registrations in an intuitive visualisation. The second experiment shows wider basins of convergence for higher scoring viewpoints. The third experiment shows that a comparable registration performance can be achieved by at least two merged high scoring views and four low scoring views. Hence, the focus could change from the acquisition of a large liver surface to a small number of distinctive patches, thereby giving a more explicit protocol for surface reconstruction. We discuss the application of the proposed method on clinical data and show initial results. CONCLUSION: The proposed simulation framework shows promising results to motivate more research into a comprehensive view planning method for efficient registration in laparoscopic liver surgery.


Assuntos
Hepatectomia/métodos , Laparoscopia/métodos , Neoplasias Hepáticas/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Tomografia Computadorizada por Raios X/métodos , Inteligência Artificial , Humanos , Aumento da Imagem , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Hepáticas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...